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Multiparticle clusters and carbon superstructure 
in martensite 

L. D A B R O W S K I  
Institute of Atomic Energy, 05-400 Otwock-Swierk Poland 

On the basis of experimentally verified concentration expansion tensor values, stress 
induced two-particle C-C potentials have been calculated in harmonic approximation. 
A calculation method has been developed and expressions derived for the evaluation of 
multiparticle interaction potentials and cluster population. The temperature range of the 
applicability of the method has been estimated. On the basis of this method it has been 
demonstrated that in thermodynamic quasi-equilibrium, carbon atoms exist in clustered 
form. The clusters most frequently appearing at 300 K are of four- and five-particle type. The 
cluster configurations have been determined and the binding energy per atom has been 
estimated as about 0.5 eV. At 78 K, there exist practically only five-particle linear clusters 
situated along the tetragonal C axis. It has been postulated that a superstructure may exist in 
martensite with a binding energy per atom nearly four times higher than in the case of the 
above clusters. The presence of superstructure is associated with the formation of five-atom 
seeds in the form of pyramids having their basis in the (00 1) plane. The formation of seeds 
with different topology from the other clusters is associated with overcoming a potential 
barrier. The postulated form of ordering at low temperatures should exhibit high thermal 
stability with respect to ordering changes and order-disorder phase transitions, as well as to 
carbide formation. 

1. Introduction 
In the structure of martensite, an interstitial solid 
solution, carbon occupies octahedral sites with prefer- 
ence to occupying O~-site positions [1, 2]. Theoretical 
calculations demonstrate that the tetrahedral sites can 
be occupied only temporarily during diffusion of car- 
bon atoms from one octahedral position to another 
E3]. Many years of systematic investigation of short 
range order by M6ssbauer effect (ME) and nuclear 
magnetic resonance (NMR) spectroscopy methods (cf. 
a review paper by Genin [4]) have revealed distinct 
statistical deviations of carbon distribution in the solu- 
tion. Thus, for instance, in freshly quenched martensite 
with a carbon content of 9.5 at .%, practically all car- 
bon atoms exist in isolated form. After ageing at room 
temperature the number of isolated carbon atoms drops 
as a result of diffusion, and stabilizes in the course of 12 
days at a level of about 20% [41. There is no doubt that 
carbon clusters have been formed in this case. 

Although the problem of specific forms of short- 
range carbon configuration has been attracting atten- 
tion for many years, it has never been satisfactorily 
solved. The resolution of experimental methods is too 
low to allow for an unambiguous interpretation, and 
the results of theoretical analysis have not been suffi- 
ciently complete thus far. Nevertheless, valuable in- 
formation has been obtained on theoretical grounds 
[3, 5, 6]. Some two-particle C-C stress induced poten- 
tials in body centred tetragonal (bet) martensite struc- 
ture have been estimated under the assumption that 
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carbon occupies octahedral sites. It follows from these 
calculations that for some pairs, such as C-C�89 (1 1 1), 
C-C (1 1 0) or C-C (1 00),  these potentials are nega- 
tive and of significant magnitude (0.13-0.44 eV). As 
a consequence, preferential formation of such clusters 
may occur. In a previous paper [7], numerical estima- 
tion of the probability of the existence of a given 
cluster has been made. It follows from these calcu- 
lations that strong correlations exist in this system as 
regards occupation of interstitial sites, leading to ma- 
jor modifications in the distribution of carbon atom 
pairs with respect to statistical distribution. 

As it follows from [-5, 6], stress induced potentials in 
carbon martensite extend over long distances. The 
authors of the above references calculated these poten- 
tials in a volume comprising 26 co-ordination shells. It 
cannot be excluded that non-negligible interactions 
may extend over much greater distances in some crys- 
tallographic directions. This may have a profound 
effect on both: a possibility of the existence of multi- 
particle carbon clusters and their formation dynamics. 
The above theoretical reasoning justifies an assump- 
tion that much larger clusters may form in this system, 
as evidenced by some experimental investigations. 
Thus for example in [4], some satellite M6ssbauer 
lines are interpreted as generated by a three-particle 
cluster with distances a-b�89 (1 l 1), b-c�89 (1 1 1) and 
a-c (1 1 0). 

The main task of the present paper is to identify the 
most probable two-particle clusters and to examine 

693 



possibilities of their growth into multiparticle clusters, 
as well as the possibilities of forming long range car- 
bon configurations, i.e. superstructure formation. 

2. Stress induced interaction 
Ordering in interstitial solid solutions can be de- 
scribed on the basis of theoretical methods developed 
for substitutional alloys. Therefore, the Hamiltonian 
of the system, given in [8] can be written for the 
considered case in the form 

1 
;t  = rio + Z v,C, + Z v,C,C  + . . .  

i U 

1 ~ ^ 

+ - Z V i j . . . k C i C j . . .  Ck (1) 
n i j . . . k  

Where/4o is the Hamiltonian of pure iron matrix: V~, 
V i j . . .  Vii . . .  k, the irreducible potentials of one-, two-, 
and n-particle C-C  interactions, respectively, (the suf- 
fixes i j . . . k  label the carbon lattice positions); 
C i ( C j . . .  Ck) the local carbon concentration oper- 
ators in i ( j . . ,  k) positions, which are random func- 
tions equal to one, when position i ( j . . ,  k) is occupied 
by a carbon a tom or zero in other cases. 

The first two terms in Hamiltonian Equation 1 in- 
duce a constant free energy shift independent of the 
degree of short and long range order, and may be 
omitted. The problem of calculating further terms of 
the expansion series, Equation 1, has been solved thus 
far only in harmonic approximation [6, 9-13]. This 
approximation makes it possible to calculate only 
two-particle potentials, V~j, and, consequently the 
series has to be cut-off at the third term. 

To calculate potentials V~j, it is necessary to know 
the Born-von-Karmann elastic constants and compo- 
nents of concentration expansion tensor for the matrix 
material, being pure ~t-Fe in our case. The material 
constants obtained experimentally by various authors 
differ substantially between each other. Table I pres- 
ents elastic constants of at-Fe, obtained in [14-16]. As 
may be seen, all values bear a significant measurement 
error and for some of them, [34, ~5, there is even 
disagreement in the sign of the reported values. 

Further errors in calculation of V~j result from dis- 
crepancies in the determination of the values of con- 
centration expansion tensor. They can be calculated 
on the basis of the measurement of martensite lattice 
constants a and c. However, their values depend, 
among others, on the degree of alloy ordering; thus 
introducing an interpretation ambiguity. The above 
situation calls for a more detailed discussion. 

Under the assumption that carbon atoms occupy 
octahedral lattice sites, the components of the concen- 
tration expansion tensor are associated with the 

martensite lattice 
relations [-5] 

a - b = 

c = ao[1 

p a r a m e t e r s b y  the following 

a0[1 + an~3 - Bnq/3] 

+ oral3 + 2[~nq/3] 
(2) 

Where a, b, c are lattice parameters of martensite; ao is 
the lattice parameter  of a-Fe; n the atomic concentra- 
tion of carbon; q the long range order parameter; 

equal 2Utl  + U33: [~, equal U33-Ull ;  and Ull and 
U33 are components of the concentration expansion 
tensor. 

Parameter  q is associated with the mean carbon 
concentration in sublattices Oa, Ob, and Oc as follows 

n(Oa) = r/(Ob) = n ( 1 - - r  1)/3 
(3) 

n(Oc) = n(1 + 2q)/3 

It follows from Equations 2 and 3 that parameter  r 1 is 
defined in such a way that if 13 = 1, carbon occupies 
only Oc lattice sites. The lattice tetragonality is at its 
maximum in this case. If vl = O, the tetragonal lattice 
transforms into a cubic one, and the carbon concen- 
trations in all sublattices are identical. 

By solving Equation 2 with respect to parameters 
and 13 

o~ = 2(a/ao - 1)/n + (c/ao - 1)In 
(4) 

= (c/ao - a /ao) / (nq)  

It follows from Equation 4, coefficient [3, unlike ~, can 
be determined only when the long-range order para- 
meter, q, is known. 

Under the assumption that q = 1, and on the basis 
of empirical dependencies of martensite lattice con- 
stants a and c on concentration, [5] determined the 
values of 0~ and [3 as 0.66 and 0.96, respectively. On the 
other hand, I.R. Entin et al. [2] demonstrated experi- 
mentally that in freshly quenched martensite of nor- 
mal tetragonality 1] = 0.7. The experiment was con- 
ducted by means of neutron diffraction on F e - N i - C  
alloy of specially prepared isotope composition, and 
the result was obtained on the basis of carbon reflec- 
tions (the matrix reflections were eliminated). 

If one assumes that 13 = 0.7, then a = 0.66 and 
[3 = 1.37. Kurdiumov et al. [53 performed calculations 
of V u for both situations. The obtained results differ 
substantially between each other. By making use of 
the Vij values obtained by Kurdiumov et al., [5] one 
can calculate temperature dependencies, q (T) ,  for 
both situations [73. It appears that there are almost 
three-fold differences in the temperatures of or- 
der-disorder phase transitions. Thus, knowledge of 
the degree of ordering is of essential importance. 

Measurements of q by neutron diffraction, such as 
those performed in [23, bear unfortunately significant 

T A B L E I Born-von-Karmann elastic constants for a-Fe x 104 dyn cm-1. The notation follows [17]. 

Ref oh :(2 or3 - or4 - 0% 131 132 -- 133 134 13s Y3 3'4 84 

14 1.688 1.463 0.092 0.012 0.029 1.501 0.055 0.057 0.003 0.032 0.069 0.052 0.0007 
15 1.628 1.552 0.118 0.023 0.046 1.485 0.054 0.088 0.024 - 0.030 0.127 0.039 0.0070 
16 1.786 1.492 0.124 0.060 0.023 1.491 0.036 0.109 - 0.006 - 0.024 0.030 0.028 0.0100 
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errors. It seems more reasonable to measure marten- 
site parameters a and c as functions of temperature. 
Freshly quenched martensite of normal tetragonality 
exhibits a weak temperature dependence in the range 
4.2-300 K [18, 19]. This is probably associated with 
formation of stable short range configurations com- 
prising carbon atoms in sublattices O,  and Oh, which 
prevent carbon migration to sublattice Oc. On the 
other hand, the temperature dependence of c/a in 
martensite of anomalous tetragonality, reported in the 
above cited references is well marked and its course 
resembles relation r l (T)  calculated in [7] (c/a ~ 13nq 
[5]). By extrapolating relations a(T) and c(T) for 
martensite of anomalous tetragonality to O K, one 
obtains the lattice parameters for q = 1. There exists 
an additional problem. Hamiltonian Equation 1 is 
expanded around/~0 of pure a-Fe and, consequently, 
all material constants refer to a-Fe. It is known that 
the volume of quenching induced martensite is greater 
than that of austenite, and as a result an isotropic 
compressive stress, absent in pure iron, exists in the 
material. In view of Equation 4, one can see that these 
stresses are a source of systematic error, which leads to 
underestimation of the values of ~ and 13 obtained. The 
experimental data presented in [-18] lead to ~ = 0.76, 
while those from [19], to ct = 0.57. On the other hand, 
in [5] it is assumed that ~ = 0.66. Since this parameter 
is independent of the degree of alloy ordering, its value 
should be independent of the method of sample prep- 
aration. S uc h  significant differences cannot be ex- 
plained by measurement errors (the resolution of the 
X-ray spectrometer was about 0.0002 nm). All the 

above mentioned examples refer to samples of bulk 
materials with significant internal stress. 

To diminish such effects a series of X-ray diffraction 
measurements were performed as functions of temper- 
ature, using thin (30 ~tm) martensite foils of relatively 
low carbon content (4 at %C), quenched in liquid 
nitrogen (retained austenite content, 2.8%). The 
measurements gave an ~ value of 1.02 [20]. On the 
basis of extrapolation of temperature dependencies of 
lattice parameters to 0 K 13 = 1.845 was obtained, 
which leads to Utl = -  0.275 and U33 = 1.57; an 
error was estimated, as AUll =_+ 0.02 and 
A U 3 3  = -]- 0 . 0 8 .  

Using the concentration expansion constants deter- 
mined in this way, V~j values were calculated by the 
pseudopotential method described in [6, 9-13]. Into 
account were taken 266 thousands of momentum vec- 
tors, k, from the first Brillouin zone. The calculations 
were performed in three versions, each making use of 
various sets of elastic constants presented in Table I. 
The results of the calculations are summarized in 
Table II, columns 3-5, in order of descending I g~l. 
values. Column 6 presents the values of the same 
potentials averaged over the three versions. Table II 
presents only the potentials with absolute values 
greater than 0.025 85 eV (i.e. corresponding to 300 K). 
The last column also presents the averaged potential 
values calculated at extreme values of the concentra- 
tion expansion tensor, U~I = U~I - AU11 = - 0.295 
and U*3 = U33 + AUa3 = 1.65. It follows from the 
data presented in Table II that errors in determination 
of elastic constants do not affect the sequence and the 

T A B L E I I The  values  of  s t ress  i n d u c e d  energies ,  V(x, y, z) of  the C C pa i r s  i n t e r a c t i o n  (in eV) be tween  a c a r b o n  a t o m  loca t ed  a t  the hkl 
pos i t i on  a n d  a n o t h e r  c a r b o n  a t o m  loca t ed  a t  the  0 0 0  pos i t i on  of  the  Oc subla t t ice .  The  values  o f  po ten t i a l s  in c o l u m n s  3, 4 a n d  5 a re  

ca l cu l a t ed  o n  the  bas is  o f  e last ic  c o n s t a n t s  f r o m  [ 1 4 ] - [ 1 6 ] ,  respect ively.  C o l u m n  6 p resen t s  m e a n  values  of  potent ia l s .  All po ten t i a l s  a re  

ca l cu l a t ed  for  values  U ~  = - 0 .275 a n d  U33 = 1.57. C o l u m n  7 s h o w s  m e a n  va lues  of  these  po ten t i a l s  ca l cu l a t ed  for  ex t r eme  values  

U*~ = - 0 .295 a n d  U~'3 = 1.65 

No.  h K l Vcj [14]  Vii [15]  Vlj [16]  (V~j)  (Vi*) 

1 2 3 4 5 6 7 

1 0 0 1 4 .76027  4 . 7 2 2 1 0  4 . 6 5 9 6 6 0  4 .71401  5 .15980  

2 0 0 2 --  0 . 7 2 2 7 0  --  0 .72523  - 0 . 7 1 4 9 5 0  0 .72096  --  0 . 79005  

3 1/2 1/2 3/2 0.463 62 0.428 78 0.459 857 0.450 75 0.495 15 

4 1/2 1/2 I /2  --  0 . 3 8 0 9 9  - 0 .34941  --  0 . 3 7 2 9 0 0  --  0 . 36777  --  0.403 91 

5 1 0 0 --  0.228 36 --  0 . 1 8 2 3 2  --  0 .186 760 --  0.199 15 --  0 . 21943  

6 0 1 2 0 .11999  0 . 1 0 9 5 2  0 . 1 1 8 9 9 0  0.116 17 0 .12768  

7 l i 2 0.070 79 0.058 69 0.071 490  0.066 99 0.074 43 

8 1/2 0 1 --  0.057 93 - 0 .057 25 --  0 .056 460 - 0 .057 21 - 0 .062 63 

9 3/2 0 1 --  0 .057 93 - 0 .057 25 --  0 .056 460 --  0 .057 21 - 0 .062 63 

10 0 0 6 0.057 50 0.057 05 0.056 220 0.056 92 0.062 26 

I 1 0 0 5 0.055 59 0.055 47 0.054 570 0.055 91 0.060 36 

12 1/2 1/2 5/2 --  0.051 07 --  0 . 0 5 2 6 0  - 0 . 0 6 0 0 8 0  0 .05458  - 0 . 0 5 9 9 0  

13 1 1 0 - 0 .070 12 --  0 .055 33 - 0.035 320 --  0.053 59 --  0 .057 31 

14 0 0 4 0.045 97 0.046 70 0.046 240 0.046 30 0.050 51 

15 2 0 0 - 0 . 0 4 3 4 8  - - 0 . 0 4 4 5 7  - - 0 . 0 4 6 2 1 0  - - 0 . 0 4 4 7 5  - 0 . 0 4 8 7 1  

16 3/2 1/2 1/2 --  0.048 92 --  0.043 70 --  0.039 830 --  0 .044 15 - 0.048 15 

17 2 0 1 0.037 97 0.042 86 0.044 600 0.041 81 0.045 60 

18 1 0 1 0.052 65 0.037 33 0.032 150 0.040 71 0.044 90 

19 5 0 0 - - 0 . 0 4 0 4 0  - 0 . 0 3 8 9 3  - 0 . 0 3 8 7 9 0  - 0 . 0 3 9 3 7  - - 0 . 0 4 3 1 1  

20 0 1/2 0 0.040 15 0.038 82 0.038 600 0.039 19 0.042 91 

21 4 0 0 - 0 . 0 3 9 1 5  - - 0 . 0 3 8 3 1  - - 0 . 0 3 8 5 7 0  - 0 . 0 3 8 6 8  - 0 . 0 4 2 3 4  

22 3 0 0 - 0 .035 54 0.036 78 --  0.038 280 --  0 .036 87 --  0 .040 31 

23 3/2 1/2 5/2 0.037 61 0.032 36 0.035 560 0.035 17 0.038 78 

24 I 1 1 --  0 .02521  - 0.021 24 --  0.041 550 --  0 . 0 2 9 3 4  --  0 . 03402  

695 



signs of potentials. This indicates that the solution 
obtained at such values of constants U~j is stable. 
A comparison of the obtained Vii values with those 
reported in [3, 5, 6] shows a qualitative agreement. 
The results presented in Table II confirm the existence 
of all clusters predicted in these papers (the appropri- 
ate Vii potentials are negative and large in magnitude). 
There is, however, an essential difference. It follows 
from the data in Table II (column 6, line 2) that it 
should be the C-C (0 0 2) cluster which occurs most 
frequently, while the results of [5, 6] practically ex- 
clude its existence. In the authors' opinion this differ- 
ence can be explained by differences between the 
values of the components of the concentration expan- 
sion tensor used. 

An analysis of the sequence of the co-ordination 
shells appearing in Table II, at decreasing V~j potential 
values, reveals that the interactions extend over very 
large distances in some crystallographic directions, 
such as the a, b and c axes (five to six lattice constants), 
while in other directions, such as [1 1 1], the extent is 
relatively small. The above observation may be impor- 
tant in interpreting the process of forming large 
clusters. 

3. Many-particle potentials 
Like two-particle potentials, many-particle poten- 
tials determine the population of the corresponding 
many-particle clusters. Two factors affect the values 
of many-particle potentials. One of these is many- 
particle irreducible Vij...k potentials, appearing in 
Hamiltonian Equation 1, and reducible potentials 
of the same order formed from appropriate combina- 
tions of irreducible potentials of lower orders. 
The reason for the presence of the latter is a non- 
linear relation between the internal energy and the 
Hamiltonian. 

The diagram technique, developed for the Ising 
model [22], and adopted for two-component alloys 
[23], makes it possible to calculate reducible many- 
particle potentials of arbitrary order. This gives good 
results in the application to substitutional alloys [24]. 
It cannot be applied, however, to the system con- 
sidered here, since it is based on high temperature 
expansions satisfying condition V~j...k/kT < 1. As it 
follows from Table II, the calculated potential values 
satisfy the exactly opposite relation at 300K 
(kT = 0.025 85 eV). In [7], an expansion of internal 
energy into a series convergent at low temperatures 
was proposed, but analysis of the system, with the 
presence of large clusters in mind, performed by this 
method is extremely cumbersome. In the present 
paper another approach is proposed. 

Let one consider a partition function of the Gibbs' 
ensemble, which in the notation of Equation 1 has the 
form 

Z = exp - 2 - ~ V i j d i C j + " "  
U 

1 
y~ v~j...~ d,dj...kd~ (5) 

n!kT ~j...k / 
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For a specified three-particle cluster of fixed suffixes, i, 
j and k, the factor representing this cluster in the 
partition function is as follows 

A A A 

Z i j  k : exp[ - ( V i j C i C  j -}- V j k C j C  k 

+ V,kC~Ck + VqkC,CjCk)/kT] (6) 

If all sites i, j and k are occupied (Ci = Cj = 
Ck = 1), equation 6 is equivalent to 

Zijk exp( ' ^ * = - -  V i j k C i C j C k / k r )  (7) 

where 

v~jk = vii + vjk + vik + vijk. 

Thus, the total equivalent potential in a three-particle 
cluster is equal to the sum of the potentials of all 
two-particle interactions, plus potential V~jk ac- 
counting for a change of two-particle potentials as 
a result of the presence of the third atom. An identical 
result holds for a cluster of arbitrary size; it is neces- 
sary to sum possible interaction potentials of the high- 
est possible order and of all other lower orders�9 
Accounting for Equation 7 partition Equation 5 is 
presented in the form 

Z = Zij x Zijk x - . -  Z~j...k x - . .  (8) 

where Z~j, Z~jk , . . . ,  Zij...k, represent the contri- 
butions of successive two-, three-, . . . ,  n-particle 
clusters. By replacing all these factors with their ther- 
modynamic mean values, and after a routine proced- 
ure one can obtain an expression for the internal 
energy 

z J  

1 ~ ,  , 

1 ' , 

+ ~  2 V~j...k < d , d j . . .  Ck> + " ' "  (9) 
�9 i j . . . k  

where symbol Z' means that in each such sum, all 
lattice sites taking part in the formation of the clusters 
of other orders are excluded�9 As a matter of fact, 
Equation 9 represents an expansion of internal energy 
over the contributions of corresponding clusters and 
this way of grouping is typical for cluster methods. In 
Equation 9 all total multiparticle potentials, V~...k are 
temperature independent. This is a result of low tem- 
perature approximation and, in particular, of neglect- 
ing fluctuations of factors Z~j...k. For comparison, 
when the internal energy is calculated in super high 
temperature approximation, the contributions of all 
diagrams giving rise to the presence of reducible inter- 
action potentials vanish and only irreducible poten- 
tials remain in Vi)...k. 

At absolute zero, Equation 9 is simplified in a natu- 
ral way, since all clusters except that with the lowest 
binding energy disappear. If there are n atoms in such 
a cluster, the total number of clusters in N C/n, where 
N is the total number of lattice sites and C the atomic 
concentration of impurity, i.e. 

V = NCVi}.. . , /n (10) 



As it may be seen from Equation 10, the cluster with 
the smallest binding energy per atom (this energy has 
a negative sign) is the most favourable energetically. In 
such a case, only this factor, associated with a unique 
configuration, participates in the partition function, 
Equation 8. It is identical in all components to the 
partition function. It follows that Equation 10 is accu- 
rate at 0 K. 

As the temperature rises these clusters decay and 
other clusters appear with less favourable binding 
energy, and Equation 10 gradually converts into 
Equation 9. Let one consider this process in more 
detail. 

For the sake of simplicity of further considerations, 
order the clusters in succession of growing binding 
energy, i.e. in the order of decreasing population of 
clusters. Equation 9 can be written in the form 

U = N ~  V~,C= (11) 
o~ 

where V~ equals Vi'j...k/n~; n~ is the number of atoms 
in cluster number ~; Ca is the probability that a given 
atom belongs to cluster ~. 

Now, calculate the entropy of the system by the 
combination method. It is easy to calculate that the 
total number of clusters of type ~ in NC~/n~. Then, 
calculate the total number of sites in the crystal, al- 
lowed by the given crystallographic structure, possible 
to be occupied by such a cluster. By translating a given 
cluster over the whole crystal one obtains N such 
possibilities. Moreover, at a fixed site, there are 
R~ possibilities of rotations transforming a given clus- 
ter into another one, equivalent crystallographically. 
In the case of two-particle clusters, R~ is a well known 
co-ordination number. In effect, one can obtain NR~ 
possibilities. If the cluster is of two-particle type, e.g. 
with lattice sites rl and r2, this cluster twice can be 
counted; once when ri = rl ,  and the second time when 
ri = r2. By analogy, the three-particle clusters will be 
counted three times, and in general n-particle clusters 
will be counted n times. As a final result, a given 
cluster configuration can be accomplished in the crys- 
tal in NR~/n~ ways. The above result makes it possible 
to calculate the entropy of each atom bound in an 
arbitrary cluster. Omitting technical details of calcu- 
lations, the total configuration entropy of the system 
can be written as 

S = -- k N  Z (R~ln(1 -- C~/R~) 

+ Cr - Ca)I} (12) 

Treating parameters C~ as variation parameters, from 
the condition of the minimum of free energy, 
F = U -  TS, one obtains after differentiation, the 
equilibrium values of these parameters 

C~/(R~ -- Ca) = No e x p [ -  V~/kT]  (13) 

Normalization constant No appears in Equation 13 as 
a result of taking into account the law of conservation 
of the total number of particles in the system, which in 
this notation can be written as 

C~ = C (14) 
o~ 

The value of this constant can be found numerically 
by substituting the actual value of atomic concentra- 
tion, C, into Equation 14. If condition R~ >> C is 
satisfied, which is usually the case since R~ >/1, then 
approximately 

No = C / ~  Rc, e x p ( -  V~/kT) (15) 

In this approximation, another approximate relation 
based on Equation 15 is valid 

C~/C~ = R ~ e x p [ ( - V ~  + V~)/kT] /R~ (16) 

In view of the adopted assumptions (ignoring fluctu- 
ations of factors AZij in partition Equation 8) the 
obtained solution is approximate and can be used at 
low temperatures. The actual expressions for Ca make 
it possible to estimate the temperature range of the 
applicability of the obtained solutions, the necessary 
condition being - V~/kT > 1, at least for one type of 
cluster. For carbon martensite, in view of the values of 
two-particle potentials listed in Table II for ( 0 0 2 )  
co-ordination, the value of this ratio at 500 K 
amounts to 8.36; whereas for five-particle clusters, as 
shall be demonstrated below, this value amounts to 
12.2 at 500 K. Summarizing, in the case of carbon 
martensite the proposed method can be used practic- 
ally over the whole temperature range of the existence 
of this phase. 

The proposed method is closely related to high and 
medium temperature solutions used previously in 
[7, 8, 24], but transformed to the range of super low 
temperatures. As a result, by adopting the basic solu- 
tion at absolute zero, the problem has been reduced to 
the original cluster method. 

The presently used cluster methods have been de- 
veloped mostly in order to solve problems typical of 
magnetic clusters, by taking into account the quantum 
nature of the object and adopting the appropriate 
mathematical tools [25, 26]. In such form they are 
difficult to adapt to the problems of atomic ordering. 

The approach given here, in view of the simple form 
of the obtained solutions, is comparable to earlier 
cluster methods [27-303. However, in comparison to 
these it remains sufficiently general. There are no 
a priori limitations concerning the range of interaction 
and the type and size of clusters. Moreover, the de- 
veloped method does not refer directly to a particular 
crystalline structure. Accordingly, it can be easily ap- 
plied to other interstitial alloys and to other types of 
crystallographic structure. 

4. Multiparticle clusters in carbon 
martensite 

Now, consider the populations of various carbon clus- 
ters in thermodynamic equilibrium conditions. As fol- 
lows from Table II, this is cluster C C (00 2), which is 
the most favourable energetically among the two-par- 
ticle clusters. This cluster is denoted by ~1 in Table III. 
The next one, cluster C-C�89 1 1) is denoted by ~2. 
In Table IV, mutual relations between the concentra- 
tions of carbon bound in the respective clusters at 78, 
300 and 500 K are presented, calculated on the basis 
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T A B L E  I I I  Clusters ofIInd to Vth order with the highest binding energies per carbon atom. Columns 3 -6  present lattice positions of atoms 
rj rm, bound in a given cluster. Lattice positions are determined with respect to a carbon atom located at the 0 0 0  position in the 
O~ sublattice. Column 7 shows binding energy per atom in a given cluster. 

Order Symbol rj rk rl r~, Va (eV) 

I 2 3 4 5 6 7 

II a l  0 0 2 - - --  0 .360 

a2  1/2 1/2 1/2 - - - 0 .184 

III 13x 0 0 2 0 0 - 2 - - - 0 .466 

132 0 0 2 1/2 1/2 5/2 - - - 0.381 
~3 1/2 1/2 1/2 1 0 0 -- -- --  0.311 

IV 7~ 0 0 2 0 0 --  2 0 0 4 2- 0.503 

W 1/2 1/2 1/2 1/2 1/2 1/2 0 0 2 -- 0.441 

T3 1 0 2 0 0 2 1 0 0 - --  0.402 

%, 1 0 0 0 0 2 1/2 1/2 1/2 - - 0.399 

7s 1 0 0 0 1 0 1/2 1/2 1/2 - - 0.389 

76 1 0 0 1/2 1/2 1/2 3/2 1/2 1/2 - 0 .386 

77 0 0 2 1/2 0 1 0 0 2 - - 0 .377 

78 1 0 2 0 0 2 0 0 5 - - 0.371 

3'9 1/2 1/2 1/2 3/2 1/2 1/2 0 0 2 - 0.338 

V 81 0 0 2 0 0 - 2 0 0 4 0 0 - 4 - 0 .526 

82 1 0 0 0 1 0 1 1 0 1/2 1/2 1/2 - 0.475 

83 0 0 2 0 0 2 1 0 2 1 0 0 - 0.435 

84 0 0 2 0 0 2 0 0 4 1/2 0 1 - 0.425 

T A B L E  I V  Mutual relations between carbon concentrations in 
clusters at various temperatures in thermodynamic equilibrium. 
The notation of clusters is as for Tables III and V. 

Temperature (K) 

Ci/Cj 78 300 500 

Ca~/C~I 2.83 • 10 7 0.033 0.171 

Co~/C~,~ 5 . 7 5 •  10 - 1 ~  3 . 9 6 •  10 -3  0.036 
Ca ~/C~ 1.88 x 10-11  3.25 • 10 -  3 0.042 

C~/CA~ 1 . 2 2 x  10 -1'* 8 . 6 5 •  - 5  2 . 1 0 •  -3  

C~/CA, 2 . 3 4 •  19 5.14 x 1 0 - 6  3 . 8 5 •  

Ca~/CA~ 3.11 • 10 -23 5-04 x 10 -7  9.57 x 10 - 5  

Ca~/CA~ 4.68 • 10 -26 2 . 6 0 •  - 7  1 . 1 2 •  4 

Cot~/CA~o 4.11 x 10 -41 3.16 • 10 -11 5.01 x 10 7 

Cet,/CA~ 0 3.76 • 10 -33  3.51 • l0  -20  

Co~/Ca~ 1 .70•  10 -11 4 . 4 2 x  10 -3  0.067 

Cf~/Cf3~ 1.29 x 10 -  5 0.149 0.556 
Cf~/C~ 9.42 • 10 lO 1.57 • 10 -3  0.126 

CyJCy, 3.94 x 1 0 -  5 0.363 0.949 

C7~/C7~ 1.19 x 10 . 6  0 .080 0.384 

C~,/C,r 7.62 x 1 0 - 7  0 .072 0.358 

C,~/C~,~ 1.72 x 10 -v  0.049 0 .284 

C~,o/C7~ 1.10 • 10 _7 0.043 0.265 

C-~,/C,~ 2.89 x 10 - 8  0.031 0.215 

C,I~/Cy~ 1.18 x 10 . 8  0.024 0.187 

C7~/C7~ 8.71 x 10 -11 6.76 x 10 -3  0.087 

C8=/C8~ 4,05 x 10 -  3 1.11 2.45 

C8,/C8~ 1,05 x 1 0 - 5  0.237 0.968 

C8,/C8~ 2.38 • 10 . 6  0.161 0.767 

CF~/CA~ 3.59 x 10 - 4  0.046 0 .090 

CF,/CA~ 6 . 7 0 x  10 - 1 ~  2.36 x 10 - 3  6.41 x 10 - 3  

CF~/CA, 8.22 x 10 -15 9.35 x 10 -5  2.20 x 10 3 

CF~/CA~ 1 . 7 0 x  10 -18  1 . 2 0 x  10 - s  8.45 x 10- '* 

CA~o/CA~ 4.72 x 10 -Ss  1.19 x 10 22 7.00 x 1 0 - 1 4  

of Equation 16. The number of the presented data is 
sufficient to calculate others, not included in the table 
values for all considered clusters, using simple alge- 
braic operations. As may be seen, the ratio of the 
carbon concentrations in clusters % and a2, C~,~/C~I 
amounts to 1 .7x10  -11 at 7 8 K  and to 0.0044 at 
300 K. The populations of other clusters in this tern- 
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perature interval are negligibly small. In the class of 
three-particle clusters, using the above criteria, three 
clusters may be considered, denoted in Table III as [31, 
[32 and [33, with configurations C - C ( 0  0 2 ) - C ( 0  0 2) ,  
C - C ( 0 0 2 ) - C � 8 9  1 5) and C-C�89 1 1 ) - C ( 1 0 0 ) .  
The ratios Cf~2/C~,, and C~3/C~1 amount to 
1.29 x 10 -5 and 9.42 x 10 -1~ respectively at 78 K and 
to 0.149 and 0.002, respectively, at 300 K. 

Table III contains the values of V~ potentials 
for clusters of order II to V, which can be possibly 
taken into consideration in an analysis of short 
range order in martensite. It follows from the  data 
presented in Table IV that in the group of all clusters, 
including five-particle ones, this is a five-particle 
linear cluster which should occur most frequently. 
In this cluster (denoted by 81 in Table III) the 
carbon atoms are located at octahedral vacant 
sites Oc along the tetragonal c axis, and are sepa- 
rated from each other by two lattice constants. 
The contributions of analogous four-atom clusters 
(without one of the extreme carbon atoms) denoted 
by 71 are also significant; the ratio Cvl/C61 equals 
0.033 and 0.82 at 78 and 300 K, respectively. The 
number of three-particle clusters of the same type, 
denoted by j31 is small; the ratio C~I/C6I amounts 
to 6.6 x 10 -4 and 0.098 at 78 and 300 K, respectively. 
All two-particle clusters, even if they were formed at 
the initial stage of clusterization should practically 
vanish in the course of approaching thermodynamic 
equilibrium. 

In the group of five-particle clusters, there appears 
a cluster denoted by 82 representing a pyramid with 
the base in the (00 1) plane. Its contribution C~2/C~1 
amounts to 4.05 x 10 3 at 78 K, but it is already 1.11 
at 300 K. By comparison, its four-particle counterpart, 
a pyramid with one unoccupied site at the base 
diagonal (denoted by 3'5) has a small population: 
the ratio C>/C~ amounts to 2.4 x 10  . 9  and 0.04 at 



78 and 300 K, respectively. The three-particle cluster 
mentioned in the introduction and observed in [4] is 
a fragment of clusters Ys and 62. 

Clusterization does not need to terminate at five- 
particle clusters. In the next paragraph, the likelihood 
of the presence of larger clusters in the system is 
analysed~ 

5. Hypothetical presence of superstructure 
in martensite 

It follows from the above discussion of the system 
that two five-particle clusters, types, 61 and 62, 
are present in martensite. These clusters can even- 
tually grow into larger clusters or superstructures. 
Table V presents the most energetically favourable 
clusters from the VIth to IXth order, built on the 
basis of the above-mentioned five-particle 61 and 
62 clusters. It follows from this table that the 61- 
based clusters have still less favourable binding energy 
than the initial 61 cluster, and are not competitijee 
in comparison to other clusters of the same order. 
Therefore this cluster will not grow. An exactly oppo- 
site relation holds for cluster 62. The cluster denoted 
in Table V as A9 and composed of nine carbon atoms 
will decisively dominate over the initial 62 and all 
remaining clusters. 

As a next step, consider the possibility of aggrega- 
tion of such clusters. The binding energy of two 

-A- - - - ;k . . . . . .  I , A 

$ $ St ~ f  r 
' 0  ,@ . Q ,  Q 0 , . . . . . . . .  

Figure 1 Twenty-particle cluster of A20 type Oc sublattice: (fi)) 
position of carbon a toms located in (00 1) plane: (* )  projections of 
the posit ions of carbon a toms located in the parallel plane at 
a distance of 1/2 C lattice constant:  and (O) posit ions of carbon 
a toms binding two A 9 clusters. 

A 9 clusters is --1.376eV. If, in addition, the two 
octahedral vacant sites between these clusters are 
filled (cf. Fig. 1), the binding energy increases by an 
additional - 3 . 2 7 8  eV. In effect, the binding energy 
per atom in such 20-atom clusters, denoted as A2o in 
Table V amounts to a V~ of - 0 . 9 8 5 e V .  This is 
a much more favourable situation than that in cluster 
A9. Like cluster A9, cluster A20 can also grow. As the 
limit, the binding energy per carbon atom in an infi- 
nitely large cluster of this kind was calculated. In such 
a case, the calculations simplify since all atoms are 
equivalent (the boundary conditions disappear); and 
instead of summing the interactions of every atom 
with all others, it is sufficient to calculate one-half of 
the sum of interactions of a single atom with all others. 
As a result of such calculations, with 56 co-ordination 
shells taken into account, i.e. with all atoms in this 
cluster up to a distance of eight lattice constants, 
a value of Va equal to - 2.29 eV was obtained. With 
this value, the ratio CA~o/CAo (see Table IV) amounts 
to 1.2x 10 -22 at 300K. This result grants the 
presence of such superstructure; provided, however, 
that the initial cluster, 62, with unfavourable binding 
energy has been formed during the transient forma- 
tion phase. In such a situation even 20-atom clusters, 
A2o, not speaking of all the remaining, have too low 
energy to exist in measurable quantities. Thus, the 
cluster in the form of an atomic layer, of half a lattice 
constant thickness, filling all octahedral vacant sites, 
Oc in the (00 1) plane, should attain dimensions com- 
parable with the size of a given grain. The analysis of 
the values of potentials (see Table II) leads to a con- 
clusion that the next such layer can appear not nearer 
than at a distance of three lattice constants.  

In summary, five-particle clusters of 62 type form 
seeds for growing larger clusters, which next transform 
into superstructure. Other clusters presented in 
Table III have no conditions to grow into configura- 
tions of more than five atoms. 

6. Conclusions 
As was pointed out in the introduction, marten- 
site obtained in the process of quenching is far from 

T A B  L E V Binding energy per  one particle in higher order  clusters formed on the basis of five-particle clusters. Lattice posit ions and their 
notat ion as in Table III. Columns  4 -7  give lattice posit ions of a toms attached to the initial cluster. 

Symbol Initial ri rj rk rl V (eV) 
cluster 

I 2 3 4 5 6 7 8 

VI F6 51 0 0 6 - - - 0.522 
A6 82 3/2 1/2 1/2 - - - 0.566 

VII  V7 81 0 0 6 0 0 - 6  - - - 0 . 5 1 1  
A7 82 3/2 1/2 1/2 1/2 3/2 1/2 - - 0.639 

VIII  F8 81 0 0 6 0 0 -- 6 0 0 8 - 0.495 
A8 82 3/2 1/2 1/2 1/2 3/2 1/2 1/2 1/2 1/2 - - 0.699 

IX 1"9 81 0 0 6 0 0 - 6 0 0 8 0 0 - 8 0.477 
A9 82 3/2 1/2 1/2 1/2 3/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 - 0.752 

XX A 2 0  A 9 J r  A 9 2 0 0 2 1 0 - - 0.985 
OO A m A 2 0  -- - -  2 . 2 9 0  
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thermodynamic equilibrium. Such equilibrium is at- 
tained in the process of formation of appropriate 
multiparticle clusters. In view of the obtained results, 
the clusterization process may proceed in various 
ways, depending on the conditions. Consider the pro- 
cess of formation of low temperature clusters (at 78 K), 
under the assumption that the obtained martensite 
has anomalous tetragonality, i.e. only Oc positions are 
occupied. The carbon atoms, the majority of which 
one dispersed in an isolated form after quenching, will 
aggregate into larger and larger clusters; first prim- 
arily into a l ,  [~1 and 71, and finally into 81 (cf. 
Table III). At elevated temperature, a reverse process 
will take place; larger clusters will disintegrate 
into smaller ones. This process is not associated 
with overcoming the potential barrier and is quasi- 
reversible. A different situation occurs in the case 
of clusters 82, which are the seeds for superstruc- 
tures. At the considered temperature, their equilib- 
rium population is low, i .e.  about 0.4%. The 
population of other clusters of similar topology 
and lower order (72, 73, see Table IV) is also 
low. Nevertheless, if these clusters are already 
formed, they will immediately grow to much 
larger sizes at the expense of their initial form. Since 
this disturbs thermodynamic equilibrium, n e w  8 2 

clusters must be formed. Thus, if the system is allowed 
to stay at low temperature for a sufficiently long 
time a superstructure will be formed, the process 
being irreversible. In view of its high binding 
energy, the superstructure thus formed should exhibit 
significant thermal stability as regards ordering 
changes and order-disorder phase transitions, as 
well as other phase transformations, e.g. carbide 
formation. 

The process should proceed faster at higher 
temperatures, e.g. at room temperature. However, 
there exists competitive processes which can trans- 
form the system into another local minimum of free 
energy. At higher temperatures a fraction of the 
atoms in the Oc sublattice will move to the O,  and 
Ob sublattices. With elapsing time, single, initially 
isolated, carbon atoms will form analogous clusters 
in these sublattices. Part of them can also participate 
in the formation of mixed clusters, Oc-O~ and 
Oc--Ob, such as 77 and 84. The formation of 
clusters in these sublattices will block the diffusion 
process and make migration of atoms from one 
sublattice to another an irreversible process. 

The above results are based on harmonic approxi- 
mation. In the author's opinion, verification of pos- 
sible corrections introduced by accounting for irredu- 
cible higher order potentials should be accomplished 
in an experimental way. 

Acknowledgements 
The author is thankful to Professor J. Suwalski for his 
valuable comments and suggestions. This work was 
sponsored by the KBN Research Programme. 

References 
1. V.V. SUMIN, M. G. ZEMLIANOV, L. M. KAPUTKINA, 

P. P. PARSHIN, C. D. PROKOSHKIN and A. I. 
TCHOKLO, Fiz. Met. Metalloved. (USSR) 11 (1992) 122. 

2. I. R. ENTIN, V. A. SOMENKOV and S. S. SHILSTEIN, 
Dokl. Akad. Nauk USSR 206 (1972) 1096. 

3. R.A. JOHNSON, Acta Metall. 13 (1965) 1259. 
4. J . M . R .  GENIN, Metall. Trans. A 18A (1987) 1371. 
5. G. u KURDIUMOV and A. G. KHACHATURYAN, Acta 

Metall 23 (1975) 1077. 
6. M. S. BLANTER and A. G. KHACHATURYAN, Metall 

Trans. A 9A (1978) 753. 
7. L. DABROWSKI, J. Mater. Sci. 25 (1990) 2722. 
8. Idem, J. Magn. Magn. Mater. 81 (1989) 173. 
9. A.G. KHACHATURYAN, Fiz. Tverd. Tela (USSR) 9 (1967) 

2861. 
10. H.E. COOK and D. DE FONTAINE, Acta Metall. 17 (1969) 

915. 
11. Idem, ibid. 19 (1971) 607. 
12. D.W. HOFFMAN, ibid. 18 (1970) 819. 
13. A. G. KHACHATURYAN, "Theory of Structural Trans- 

formation in Solids" (Wiley, New York, 1983), and also in 
'~Nauka", (Moscow, 1974) p. 322. 

14. V. J. MINKIEWICZ,  G. SHIRANE and R. NATHANS, 
Phys. Rev. 162 (1967) 528. 

15. B. N. BROCKHOUSE, H. E. ABOU-HELAL and E. D. 
HALLMAN, Solid State Commun 5 (1967) 211. 

16. C. VAN DIJK and J. BERGSMA, Neutron Inelastic Scattering 
1 (1968) 233. 

17. A . D . B .  WOODS, "Inelastic Scattering of Neutron in Solids 
and Liquids", Vol. II (International Atomic Eng. Agency, 
Vienna, 1963) p. 3. 

18. O. ANTSON, V. G. GAVR1LYUK, V. A. KUDRIASHOV, 
V. M. NADUTOV, K. PEYURYU, Y. PETIKAYNEN, A. 
TITTA, V. A. TRUDNOV, K. ULLAKKO, V. A. 
ULIANOV, P KHIISMYAKI and Y. P. THERNENKOV, 
Fiz. Met. Metalloved. (USSR) 10 (1990) 114. 

19. M. HAYAKAWA and M. TANIGAM1, M. Oka, Met. Trans. 
A 16A (1985) 1745. 

20. L. DABROWSKI, J. SUWALSKI, V. CHRISTOV, B. SID- 
ZHIMOV and P. MALECKI, Report IAE-2144/VIII Ot- 
wock-Swierk (1993). 

21. J .A.  RAYNA and B. S. CHANDRASEKHLER, Phys. Rev. 
122 (1961) 1714. 

22. G. HORVITZ and H. CALLEN, ibid. 124 (1961) 1757. 
23. D. A. BADALYAN and A. G. KHACHATURYAN, Fiz. 

Tverd. Tela (USSR) 12 (1970) 439. 
24. L. DABROWSKI, Phys. Status Solidi 128B (1985) 371. 
25. J .W. TUCKER, J. Appl. Phys. 69 (1991) 6164. 
26. W. METZNER, Phys. Rev. B 43 (1991) 8549. 
27. R. KIKUCHI,  Phys. Rev. 81 (1951) 988. 
28. ldem, J. Chem. Phys. 19 (1951) 1230. 
29. N.S. GOLOSOV, L. E. POPOV and L. Y. PUDAN, J. Phys. 

Chem. Solids 34 (1973) 1149. 
30. ldem, ibid. 34 (1973) 1157. 

Received 2 February 
and accepted 6 July 1994 

700 


